SINCONF2020

THREAT MODELING BASED PENETRATION TESTING: THE OPEN ENERGY MONITOR CASE STUDY

Massimiliano Rak

University of Campania L. Vanvitelli massimiliano.rak@unicampania.it

Giovanni Salzillo

University of Campania L. Vanvitelli giovanni.salzillo@unicampania.it

Felice Moretta University of Campania L. Vanvitelli felice_moretta@hotmail.it

SINCONF2020

Wednesday, Nov. 4, 2020, Online Conference

Table of Contents

- Introduction
- Security Testing through Penetration Testing
- The Proposed Penetration Testing Methodology
- Our case study: Open Energy Monitor
- Conclusions

Introduction - Contributions

- Enhancement of our Penetration Testing methodology with the integration of the CAPEC knowledge-base.
- Threat model and extension of our Threat Catalog for the MQTT protocol and multiple MQTT-based devices.
- Testing of a real-world Home Automation System: Open Energy Monitor
 - Threats;

3

- Attacks;
- Countermeasures.

Security Testing: Penetration Testing

- 4
- Human-driven and it's quality is highly based on the skills of the penetration tester (Costs & Time consuming).
- No standard and no-complete & no-redundand methodology has been defined so far.
- Several methodologies defined in recent years: NIST SP 800-115, OWASP, PTES, ISSAF.
- As well as many technical guidelines and tools for specific technology domains: OSSTMM, PTS, MFS

Security Testing: Penetration Testing

Additionaly, the available methodologies mainly focus on technical analysis:

- Good to address security vulnerabilities and exploitable attack paths.
- □ Well suited for security certification processes.
- Expensive & Hard to understand to the end user.

The Proposed Methodology

A four-step methodology guided by the TM and RA processes, that enables less-skilled pen-tester to perform security evaluations on a per threats-basis.

The Proposed Methodology (1)

1. System Modeling: (semi-)formal description of the SuT.

The methodology entirely relies on the correctness and the accuracy of the SuT model, *thorugh the* **MACM** *formalism*, which is then used to drive the following activities. Three modeling approaches:

□ (i) White-box, (ii) Grey-box, (iii) Black-box.

The Proposed Methodology (2)

- 2. Threat Modeling: threats identification
 - Threat enumeration and identification by the means of a threat catalogue.
 - It is a knowledge-base developed in the context of two EU projects (SPECS & MUSA), containing several wellknown threats grouped by multiple attributes.

The Proposed Methodology (2)

2. Threat Modeling: threats identification.

It includes threats for many software components and protocols (*Ethernet, IP, TCP, TLS, XMPP, OAUTH, Zigbee, Bluetooth, BLE, GSM,*) and it is constantly updated. It is constructed in such a way that MACM nodes coincide

to the threat asset-type field.

Threat model is created by querying and composing threats from the threat catalogue.

The Proposed Methodology (3)

10

3. Planning: planning the tests and possible attacks to perform. Penetration testers select the right test planning schemes from a pre-build knowledge base, which is continuously updated with exploitation techniques (tools and actions to execute), mapped to specific threats.

The Proposed Methodology (3) – CAPEC Integration

11

3. Planning: planning the tests and possible attacks to perform.

CAPEC MITRE - Common Attack Pattern Enumeration and Classification

Catalog of common attack patterns employed by adversaries to exploit known weaknesses.

500+ elements, classified in three hierarchical description levels (META, STANDARD, DETAILED).

4. Implementation: actual execution of the attacks.

12

An open-source platform for control automation and monitoring of several home appliances

13

MACM entities:

Nodes (6): {**Device, IoTGateway, Network, Service**} + {**MQTTClient, MQTTBroker**} Relations (3): {**use, host, connect**}.

2. Threat Modeling – MQTT Threats

In order to support the technologies involved within the case study, we enriched the catalogue with MQTT-related known threats.

ID	Threat	Description	Asset	STRIDE	CIA
T1	Device Isolation	An attacker can make the asset (an IoT Device acting	MQTT Client	Denial of Service	Availability
		as MQTT client) unable to send or receive messages.			
T2	Communication	An attacker can make the MQTT communication un-	MQTT Broker	Denial of Service	Availability
	Lock	available.			
T3	Eavesdropping	An adversary retrieve data accessing communication	MQTT Broker	Information	Confidentiality
	(Global)	among multiple assets communicating through MQTT.		Disclosure	
T4	Eavesdropping	An adversary retrieve valuable data from the transmit-	MQTT Client	Information	Confidentiality
	(Local)	ted packets that are sent from the device.		Disclosure	
T5	Action Spoofing	An attacker can access to reserved topic, to publish or	MQTT Broker	Elevation of	Confidentiality
		receive messages.		Privilege	
T6	Impersonation	An adversary can easily retrieve credentials from the	MQTT Client	Spoofing	Confidentiality
		transmitted packets that are sent from asset.			
T7	Message Tamper-	An adversary intercept and modify the packets' content	MQTT Broker	Tampering	Integrity
	ing	sent using the asset.			
T8	Device Message	An adversary intercept and modify the packets' content	MQTT Client	Tampering	Integrity
	Tampering	sent from the asset.			
T9	Data Leakage	An adversary can access to local data of the asset.	MQTT Broker	Information	Confidentiality
				Disclosure	

2. Threat Modeling – OEM TM

We retrieved the threat model in an automated way through ad-hoc queries on the threat catalogue, mapping threats to assets.

Component	Asset Type	Threats			
EmonBase, EmonPi	IoT Gateway, IoT Device	Data Leakage, Denial of Service, Impersonation, Device isolation			
EmonCMS	Service, MQTT Client	Denial of Service, Impersonation, Eavesdropping, Data Leakage			
EmonTh, EmonTx	IoT Device	Denial of Service, Impersonation, Data Leakage, Exhaustion of Power, Device			
		isolation			
Radio Network	Network	Eavesdropping, Message tampering, Message elimination, Message injection, Net-			
		work partitioning, Jamming			
WiFi Network	Network	Eavesdropping, Message tampering, Message elimination, Message injection, Net-			
		work partitioning, Jamming, Network access, Topology disclosure			
Mosquitto	MQTT Broker	Denial of Service, Action spoofing, Eavesdropping, Impersonation, Message tam-			
		pering, Communication lock			
WiFi MQTT Relay	MQTT Client, IoT Device	Impersonation, Denial of Service, Data Leakage, Eavesdropping, Device message			
		tampering			
Node-RED	MQTT Client, Service	Denial of Service, Impersonation, Eavesdropping, Data Leakage, Device isolation			

Table 2: Open Energy Monitor Threat Model

3. Penetration Testing Planning – CAPEC

For each threat of our threat model, we identified the related metalevel attack(s), and the subsequent standard and detailed patterns that could implement a feasible attack.

ID	Name	Туре	Description	Child Of
125	Flooding	Meta	An adversary consumes the resources of a target by rapidly engaging in a large	N/A
			number of interactions with the target.	
227	Sustained Client	Meta	An adversary attempts to deny legitimate users access to a resource by continually	N/A
	Engagement		engaging a specific resource in an attempt to keep the resource tied up as long as	
			possible.	
482	TCP Flood	Standard	An adversary may execute a flooding attack using the TCP protocol with the intent	227
			to deny legitimate users access to a service.	
117	Interception	Meta	An adversary monitors data streams to or from the target for information gathering	N/A
			purposes.	
157	Sniffing	Standard	An adversary may intercept information transmitted between two third parties.	117
	Attacks		The adversary must be able to observe, read, and/or hear the communication traffic,	
			but not necessarily block the communication or change its content.	
158	Sniffing	Detailed	An adversary intercepts information transmitted between two parties. The adver-	157
	Network Traffic		sary must be able to observe, read, and/or hear the communication traffic, but not	
			necessarily block the communication or change its content.	

Table 3: CAPEC Attack Patterns

3. Penetration Testing Planning

ID	Attack	Threat(s)	Meta	Standard	Detailed	Related
A1	Packets Sniffing	T3, T4	117	157	158, 65	N/A
A2	Identity Spoofing	T6	151	194, 195	633	T4
A3	Brute Force	T6 112		49 16, 70		N/A
A4	Data Stealing	T9 122 1, 180		1, 180	N/A	T5
A5	Privilege Escalation	T5	122	1, 180	N/A	T6
A6	Snarfing	T7, T8	94	384, 185	385, 389	N/A
A7	CONNECT Flood	T2	125	488	N/A	N/A
A8	PUBLISH flood	T1, T2	125	488	N/A	N/A
A9	DoS Impersonation	T6	227	N/A	N/A	T6

Table 4: Attack Plan Table

3. Penetration Testing Planning

ID	Attack	Threat(s)		Meta	Standard	Detailed	Related
A1	Packets Sniffing	T3, T4		117	157	158, 65	N/A
A2	Identity Spoofing	T6		151	194, 195	633	T4
A3	Brute Force	T6		112	49	16, 70	N/A
A4	Data Stealing	T9		122	1, 180	N/A	T5
A5	Privilege Escalation	T5		122	1, 180	N/A	T6
A6	Snarfing	T7, T8		94	384, 185	385, 389	N/A
A7	CONNECT Flood	T2		125	488	N/A	N/A
A8	PUBLISH flood	T1, T2		125	488	N/A	N/A
A9	DoS Impersonation	T6		227	N/A	N/A	T6

Tabl : Attack Plan Table

T3	Eavesdropping	An adversary retrieve data accessing communication	MQTT Broker	Information	Confidentiality	
	(Global)	among multiple assets communicating through MQTT.		Disclosure		
T4	Eavesdropping	An adversary retrieve valuable data from the transmit-	MQTT Client	Information	Confidentiality	
	(Local)	ted packets that are sent from the device.		Disclosure		

3. Penetration Testing Planning

ID	Attack	Threat(s)	Meta	Standard	Detailed	Related
A1	Packets Sniffing	T3, T4	117	157	158, 65	N/A
A2	Identity Spoofing	T6	151	194, 195	633	T4
A3	Brute Force	T6	112	49	16, 70	N/A
A4	Data Stealing	T9	122	1, 180	N/A	T5
A5	Privilege Escalation	T5	122	1, 180	N/A	T6
A6	Snarfing	T7, T8	94	384, 185	385, 389	N/A
A7	CONNECT Flood	T2	125	488	N/A	N/A
A8	PUBLISH flood	T1, T2	125	488	N/A	N/A
A9	DoS Impersonation	T6	227	N/A	N/A	T6

Table 4: Attack Plan Table

117	Interception	Meta	An adversary monitors data streams to or from the target for information gathering	N/A
			purposes.	
157	Sniffing	Standard	An adversary may intercept information transmitted between two third parties.	117
	Attacks		The adversary must be able to observe, read, and/or hear the communication traffic,	
			but not necessarily block the communication or change its content.	
158	Sniffing	Detailed	An adversary intercepts information transmitted between two parties. The adver-	157
	Network Traffic		sary must be able to observe, read, and/or hear the communication traffic, but not	
			necessarily block the communication or change its content.	

20

Prerequisites

The target must be communicating on a network protocol visible by a network sniffing application.

The adversary must obtain a logical position on the network from intercepting target network traffic is possible. Depending on the network topology, traffic sniffing may be simple or challenging. If both the target sender and target recipient are members of a single subnet, the adversary must also be on that subnet in order to see their traffic communication.

Skills Required

[Level: Low]

Adversaries can obtain and set up open-source network sniffing tools easily.

Resources Required

A tool with the capability of presenting network communication traffic (e.g., Wireshark, tcpdump, Cain and Abel, etc.).

Consequences

The table below specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Scope	Impact	Likelihood
Confidentiality	Read Data	

Mitigations

Obfuscate network traffic through encryption to prevent its readability by network sniffers.

Employ appropriate levels of segmentation to your network in accordance with best practices.

F		Interception	Meta	An adversary monitors data streams to or from the target for information gathering			
				purposes.			
Γ		Sniffing	Standard	An adversary may intercept information transmitted between two third parties.	117		
		Attacks		The adversary must be able to observe, read, and/or hear the communication traffic,			
				but not necessarily block the communication or change its content.			
Γ	158	Sniffing	Detailed	An adversary intercepts information transmitted between two parties. The adver-	157		
		Network Traffic		sary must be able to observe, read, and/or hear the communication traffic, but not			
				necessarily block the communication or change its content.			

21

4. Penetration Testing Implementation – MQTT Packet Sniffing

22

4. Penetration Testing Implementation – MQTT Packet Sniffing

Toolchain: D Ettercap (L2 MITM, through ARP poisoning)

Wireshark (packet logging & analysis).

■ [Ettercap 0.8.3 (EB)	3 • : - • ×				
Host List >	<		мітм —				
IP Address	MAC Address	Description	ARP poisoning				
192.168.1.1	10:13:31:51:C5:F0		NDP poisoning				
192.168.1.5	2C:F4:32:60:93:49		ICMP redirect				
192.168.1.9	1C:4D:66:64:E6:14		Port stealing				
192.168.1.18	F0:76:6F:69:AE:85		DHCP spoofing				
192.168.1.53	CC:32:E5:D7:11:74		Stop MITM attack(s)				
192.168.1.79	DC:A6:32:9F:7D:CD						
192.168.1.98	00:0C:43:6B:35:3E		SSL Intercept				
192.168.1.99	38:F9:D3:BD:22:C0						
D	elete Host	Add to Target 1	Add to Target 2				
Starting onnet							
Randomizing 25	55 hosts for scanning						
Scanning the w	hole netmask for 255 h	Nosts MQTT	BROKER				
9 nosts added to Host 192 168 1	o the hosts list 79 added to TARGET1						
Host 192.168.1	.99 added to TARGET2		MQTT CLIENT (Thermostat)				

23

4. Penetration Testing Implementation – Packet Sniffing

										*	wlan0					_ 0	×
	<u>F</u> ile <u>M</u> o	difica	<u>V</u> isualizz	a Va <u>i</u>	<u>C</u> attu	ra <u>A</u> r	nalizza	<u>S</u> tatisti	che	Telefon <u>i</u>	a <u>W</u> irele	ss S <u>t</u> r	umenti	<u>A</u> iuto			
		٦		0101 0110 0111	X	6	٩ 🌾	•	Ì	T 🛓				€	•		
	mqtt																÷
N	0.	Time		Source	e		De	estinatio	n		Protocol	Length	Info				
	- 13 16 20 23 56 61 64 107 109 112 115 144 146 149 152	2.667 2.692 2.692 9.666 9.683 9.693 9.700 16.67 16.80 16.82 23.68 23.70 23.71	7838836 3256781 1351602 3686893 3535667 3915461 3551882 3940387 76381054 99737243 99930439 19680072 32099169 97492118 96013733 16084706	192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1 192.1	68.1.9 68.1.7 68.1.9 68.1.7 68.1.9 68.1.7 68.1.9 68.1.7 68.1.7 68.1.9 68.1.7 68.1.9 68.1.7 68.1.9 68.1.7 68.1.7 68.1.9 68.1.7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	19 19 19 19 19 19 19 19 19 19 19 19 19 1	$\begin{array}{r} 2.168.1\\ 2.168$	79 99 79 99 79 99 99 99		MQTT MQTT MQTT MQTT MQTT MQTT MQTT MQTT	111 109 110 70 111 109 110 70 110 109 110 109 110 70	Publis Publis Publis Publis Publis Publis Publis Publis Publis Publis Publis Publis Publis Publis	n Messa n Messa n Ackin n Messa n Messa n Messa n Messa n Messa n Ackin n Messa n Messa n Messa n Messa n Messa n Messa	age [age [age ((id=2 age [age ((id=2 age [age [age [age ((id=2	[emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/control/relay/1] (id=249) [emon/esp_1234A/heating/status/relay 249) [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/control/relay/1] (id=251) [emon/esp_1234A/heating/status/relay 251) [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/control/relay/1] (id=253) [emon/esp_1234A/heating/status/relay 253) [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1] [emon/esp_1234A/heating/status/ds18b20/1]	у у у
	Frame Ether Inter	13: 1 net II net Pr	l11 bytes [, Src: Aµ rotocol Ve	on wi ople_b ersion	re (888 d:22:c0 4, Sro	8 bits 0 (38: c: 192	s), 111 :f9:d3: 2.168.1	bytes bd:22:c .99, Ds	captu 0), D t: 19	red (88 st: Hor 2.168.1	8 bits) HaiPr_31 79	on int L:fd:52	erface (88:9f	wlan0, :fa:31	, id 1:fd:	0 52)	
	MQ Te	missic lemetr	ry Transpo	ort Prot	ocol, S otocol,	, Publ	ort: 54 Lish Me	ssage	t Por	t: 1883	s, Seq: 1	L, ACK:	1, Ler	1: 45			
	0000 88 0010 00 0020 01 0030 01 0040 94 0050 31	3 9f f 3 61 0 4 f d 3 00 c 4 e7 3 2 33 3	a 31 fd 5 0 00 40 0 4 f7 07 5 a b1 00 0 0 2b 00 2 4 41 2f 6	2 38 f 0 40 0 b ec 5 0 01 0 7 65 6 8 65 6	9 d3 b 6 b6 9 a be 3 1 08 0 d 6f 6 1 74 6	od 22 94 c0 39 1c 0a 0b 6e 2f 69 6e	c0 08 0 a8 01 0 54 73 0 8d 4d 5 65 73 7 67 2f 7	00 45 00 63 c0 a8 6a 80 18 54 1b 63 70 5f 31 73 74 61	9 · · 2 3 · 2 3 · · 0 1 · · 1	• 1 R8 • 0 0 0 • • [· Z • 0+• 'em 84A/hea	·····E· ······························						•
		MO Te	lemetry Tr	anspor	t Protoc	ol Pro	otocol						Pace	chetti ·	155 .	visualizzati: 16 (10 3%) Profile: Default	

24

4. Penetration Testing Implementation – Packet Sniffing

								*w	lan0									-		×
<u>F</u> ile	<u>M</u> odifica	<u>V</u> isualizza	Va <u>i</u>	<u>C</u> attura	<u>A</u> nalizza	<u>S</u> tatist	iche 1	¯elefon <u>i</u> a	<u>W</u> irele	ss S <u>t</u> ru	menti	<u>A</u> iuto)							
		۲	63.03 63.03 63.13 63.13	8	٩ «	Þ 🔿		e 🕈		Ð		Ę	3							
	nqtt																	×→	•	÷
No.	Time	-	Source		D	estinatio	n	P	rotocol	Length In	fo									-
	61 12.85	6077648	192.168	3.1.99	1	92.168.	1.79	٢	QTT	122 C	onnect	Comm	and							
	66 12.86	7216145	192.168	3.1.79	1	92.168.	1.99	Μ	IQTT	70 C	onnect	Ack			,	40044				
	70 12.8/	060/772	192.168 102 169	1.99 1.70	1	92.168.	1.79	M	IQII IOTT	111 S 71 S	ubscri ubscri	be Ke	equest (10	d=1) [€	emon/esp	_1234A/n	eating/co	ntrol		
	75 12.89	8345872	192.168	3.1.99	1	92.168.	1.79	M	ютт	110 P	ublish	Mess	ade (id=1)	2) [emo	n/esp 1	234A/hea	ting/stat	us/re		
	77 12.90	5821753	192.168	3.1.79	1	92.168.	1.99	M	IQTT	70 P	ublish	Ack	(id=2)	-, [g/			
	81 13.86	1767128	192.168	3.1.99	1	92.168.	1.79	Μ	IQTT	111 S	ubscri	be Re	quest (i	d=3) [€	emon/esp	_1234A/h	eating/co	ntrol		
	83 13.87	5712826	192.168	3.1.79	1	92.168.	1.99	M	IQTT WTT	71 S	ubscri	be Ac	k (id=3)	n/000 1	2244 /ba	sting/st	atus (de10	b20/1		-
4	00 10 00	0194794	197 106	1 44		97 106	1 /4			111 P	uniisn	MPSS	ane remo	U/PS0	7.3447 HP	ar mozsi	410570516	•		
	Header Flags: 0x10, Message Type: Connect Command																			
	Msg Len: 54																			
	Protocol	Name Leng	ith: 4																	
	Version:	MOTT v3.1	.1 (4)																	
	Connect	Flags: 0xc	2, Use	r Name F	Flag, Pas	ssword F	lag, (oS Leve	l: At m	ost once	e deliv	very	(Fire and	l Forge	t), Clea	n Sessi	on Flag			
	Keep Ali	ve: 60			<u>.</u>		5.							5			5			
	Client ID Length: 18																			
	User Nam	D: my mott	cherm 6	ostat																
	User Nam	e: emonpi	0																	
	Password	Length: 1	.4																	
	Password	: emonpimo	tt2016																	Ŧ
000	0 88 9f fa	a 31 fd 52	38 f9	d3 bd 2	22 c0 08	00 45 0	0	·1·R8· ·	• " • • • E •											
001	00 6c 0	00 40 00	40 06	b6 89 d	c0 a8 01	63 c0 a	8 ·1	· · 0 · 0 · · ·	····C··											
002	0 01 4T d	5 61 07 5b	dd a4	1a 30 1	1C 07 5T	8/801	8 ∙0 €	·a·[<mark>····</mark>	<u> </u>											
004	0 06 fd 1	36 00 04	4d 51	54 54 (04 c2 00	3c 00 1	2	6. MO T	T···<·											
005	0 6d 79 5	6d 71 74	74 5f	74 68 0	65 72 6d	6f 73 7	4 my	_mqtt_ t	hermost											*
0	🏹 wiresh	ark wlan0 '	202005	2519201	5 kilZCLp	capng				Pacche	tti 199	5 · visi	ualizzati: 1	1 (5.6%) · scarta	ti: 0 (0 0º	%) Profile	o: Defai	ult	

25

Results

ID	Attack	Threat	ER	Critical issues	Countermeasures			
A1	Packet Sniffing	T3, T4	\checkmark	Packets' payload are sent in clear	TLS			
A2	Identity Spoofing	T6	\checkmark	Credentials are sent in clear	TLS			
A3	Brute Force	T6	\checkmark	No sleep delay between consequent requests	Limit the incoming requests rate			
A4	Data Stealing	T9	\checkmark	Topics with basic level "\$SYS" are accessible to all	Access Control List			
A5	Privilege Escalation	T5	\checkmark	Each client can subscribe to all topics	Access Control List			
A6	Snarfing	T7, T8	\checkmark	No integrity check of data packets	TLS or HMAC			
A7	CONNECT Flood	T2	\checkmark	No delay between consequent CONNECT re-	Limit the incoming requests rate			
				quests				
A8	PUBLISH Flood	T1	\checkmark	No delay between consequent PUBLISH requests	Limit the incoming requests rate			
A9	DoS Impersonation	T1	\checkmark	No warnings upon multiple authentication at-	Warning system, additional auth			
				tempts	features			

Table 5: OEM Penetration Test Summary

Many of the suggested mitigation techniques are already supported by the MQTT standard and by many of the MQTT implementation, although they must be often explicitly enabled on most of the systems, including OEM.

Conclusion & Future Works

- 26
- The penetration testing methodology we adopted supports IoT-based systems and enable professionals with limited computer security skills to identify and demonstrate suitable attacks.
- Available software, as OEM, should improve and enforce security-by-default configuration preset & requirements.
- In the next future we plan to:
- extend our model by building a set of tools to automate threats verification and automated testing &
- enrich the attack plan generation by integrating other sources of Cyber Threat Intelligence.

Thanks for your attention

QA

Threat Modeling based Penetration Testing: The Open Energy Monitor Case study

Massimiliano Rak

University of Campania L. Vanvitelli massimiliano.rak@unicampania.it

Giovanni Salzillo

University of Campania L. Vanvitelli giovanni.salzillo@unicampania.it

Felice Moretta

University of Campania L. Vanvitelli felice_moretta@hotmail.it