
Modeling Replay And Integrity
Violations Attacks For Cryptographic
Protocols Source Codes Verification Of
E-Voting System Based On Blind
Intermediaries

I n s t i t u t e o f C o m p u t e r Te c h n o l o g i e s a n d I n fo r m a t i o n S e c u r i t y. S o u t h e r n F e d e ra l U n i v e rs i t y

P r o fe s s o r, D o c t o r o f Te c h n i c a l S c i e n c e s , L i u d m i l a B a b e n ko , l k b a b e n ko @ s fe d u . r u

G r a d u a t e s t u d e n t , I l y a P i s a r e v, i l u a . p i s a r @ g m a i l . c o m

mailto:lkbabenko@sfedu.ru
mailto:ilua.pisar@gmail.com

Classic development
1. Protocol creation

2. Description on Alice-Bob language like: A->B: Ek(m)

3. Description on verificator's specification language

4. Verification by special tools like Avispa, Scyther, ProVerif, Tamarin Prover.

5. Protocol repairing if attacks were founded and go to step 3.

6. If protocol is secure – implementation it on programming language for secure system

Problems
- Details lost due to abstract protocol form

Limitations and assumptions of protocols verifiers. For example, symmetric encryption modes,
integrity control are not considered.

- Importance description on difficult specification languages

Number of verifiers have difficult language to describe behavior of protocol (like HLPSL in
Avispa) and it can take a lot of time to describe it qualitatively and correctly.

- Doesn’t guaranty protocol secure implementation (MAIN PROBLEM)

Protocol can be modified during implementation on program language, it can be additional
messaging between the parties, it can be protocol-logic errors on source code like lack of
checking the returned random number in request-response schemes, it can be simple human
factor that can lead to any other error in the source code.

Implementation problems

Alice-Bob form of
previous protocol:
1. A -> B: E_kb(Na, A)
2. B -> A: E_ka(Na, Nb)

Alice-Bob form of
implemented protocol:
1. A -> B: E_kb(M1L)
2. A -> B: E_kb(Na, A)
3. B -> A: E_ka(M2L)
4. B -> A: E_ka(Na, Nb)

!=

Protocol in theory:
1. A -> B: E_k(Na)
2. B -> A: E_k(Na, kNew)
If Na in message 1 not
equal Na in message 2
so break connection
because someone
intervened in
connection.

Protocol practice
implementation:
1. A -> B: E_k(Na)
2. B -> A: E_k(Na, kNew)
No checks for Na in
source code due to
programmer error what
mean that protocol not
working at practice.

!=

Source code to Alice-Bob format
Source code on programming

language->

AnB (Alice-Bob) format

…

byte[] M1enc;

using (RSACryptoServiceProvider RSA =

new RSACryptoServiceProvider())

{

RSA.ImportParameters(

rsaPB.ExportParameters(false));

M1enc = RSA.Encrypt(M1, true);

}

socA.Send(M1enc);

…

1. A -> B: E_key(ID, Password)

2. B -> A: E_key(Answer)

Previous
source
code part

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

…

//Some other systems methods

void SomeMethod()

{

IPEndPoint remoteEP =

new IPEndPoint(SomeSystemsIP, SomeSystemsPort);

…

byte[] ID =

Encoding.Unicode.GetBytes(textBox1.Text);

byte[] password =

Encoding.Unicode.GetBytes(textBox2.Text);

byte[] M1 = Enc(ID.Concat(password).ToArray(),

key);

soc.Send(M1)

byte[] M2 = new byte[64];

soc.Receive(M2)

…

}

…

//Some other systems methods

Reduced
system
source code
part

1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25

void SomeMethod()
{
IPEndPoint remoteEP = new IPEndPoint(LocalIP,

LocalPort1);
…
byte[] ID = File.ReadAllBytes("file1.txt");
byte[] password =

File.ReadAllBytes("file2.txt");

byte[] M1 = Enc(ID.Concat(password).ToArray(),
key);

soc.Send(M1)

byte[] M2 = new byte[64];
soc.Receive(M2)
…
File.WriteAllLines(@"ClientFLAG.txt",

new string[] { "Good" });
}

Dynamic analysis scheme

Extended

protocol

description

Reduced

system source

code

automated

generation

Attacks on

protocol

Dynamic

analysis

Dynamic analysis. principle of “false
termination”.

Channel

->

<-

->M3->

Server:

1. ->Ek(M1)

2. <-Ek(M2)

3. ->M3

“Correct end

flag”

Client:

1. Ek(M1)->

2. Ek(M2)<-

3. Ek(M3)->

“Correct end

flag”

If “Correct end flag” on all sides – an attack was found

Replay attack examples
Attack 1 Attack 2 Attack 3

1. A->B: M1

2. B->I: M2

I->A: M1

3. A->B: M3

1. A->B: M1

2. B->A: M2

3. A->I: M3

I->B: M1

1. A->B: M1

2. B->A: M2

3. A->I: M3

I->B: M2

Attack 1 Attack 2 Attack 3 Attack 4

1. A->I: M1

I->A: M1_old

2. B->A: M2

1. A->I: M1

I->B: M2_old

2. B->A: M2

1. A->B: M1

2. B->I: M2

I->A: M1_old

1. A->B: M1

2. B->I: M2

I->A: M2_old

Integrity violation attack examples

A, 48 bytes Na, 24 bytes Ekold(k), 32 bytes

Modified

byte

Attack 1

Attack 2

Attack 3

Modified

byte

Modified

byte

E-vote system based on blinded
intermediaries

Voter
Authentication

server
Voting server Bulletin board

E-voting protocol

Dynamic analysis results.
On implementation all messages sends by this construction:

(1) AS -> V: 𝐸𝑣𝑎𝑠(MessL1)

(2) AS -> V: 𝐸𝑣𝑎𝑠(𝑀𝑒𝑠𝑠𝑎𝑔𝑒)

Results. Replay attack

Weakness description and how to fix
There was a check for “good” in the source code, but no action was taken on this check. In all other
checks in the code, when the returned values do not match, the protocol ends, and this event is written
to the log. This attack itself does not affect the quality of this protocol, but this flaw can cause a desync
error. This message determines whether the authentication server installs information that the user
has successfully voted. Due to this flaw, an intruder can affect the security of the voting procedure,
since it can block the data transmission channel between the voter and the voting server, and then
send a confirmation message to the authentication server. As a result, the authentication server will
assume that the user has voted correctly, but his vote on the voting server will not be counted due to
the blocking of the channel. To correct this defect, it is necessary to add the correct processing if the
return value does not match, by analogy with other places in the source code. In this case, the
implementation of the protocol will be completely protected from replay-attacks and integrity
violations.

Future
work. DPA
language.
Custom
modeling.

Conclusions
The paper describes a dynamic analysis method for detecting replay-attacks and integrity violations
attacks. The proposed approach allows security verification of cryptographic protocols at the last
stage of their development, which is the most effective way to detect attacks. Dynamic analysis was
applied to readymade e-voting system, which developed on C# language. We found replay-attack. This
attack can lead to components desynchronization. So, voting server think that voter doesn’t vote, but
authentication server think that voter vote. Protocol itself is secure, but there was an implementation
error. In source code part with last message was no correct check processing. After repairing this code
error this protocol implementation will be secure from replay-attacks and integrity violation attacks.
The future direction of work is to add security and authentication attacks support, as well as increase
the variations of simulated attacks.

