Social networks bot detection using Benford's law

M. Kolomeets¹², D. Levshun¹², S. Soloviev²³, A. Chechulin¹, I. Kotenko¹ ¹St. Petersburg Federal Research Center of the Russian Academy of Sciences ²Université Paul Sabatier Toulouse III ³Toulouse Institute of Computer Science Research (IRIT)

Bot types in social networks

- Bot a social network account that cheats metrics and does not express the real opinion (if any) of its creator
- Controlled by:
 - Software (automated)
 - Human (human animated bots)
- Created by:
 - Software
 - Human
 - Hacking / Buying / Renting an account from a real user

What we can analyze to detect bot?

- Account metrics
- Distributions of friend's metrics
- Network centrality measures
- Text
- Meaning/Emotion/Information content
- Timeline

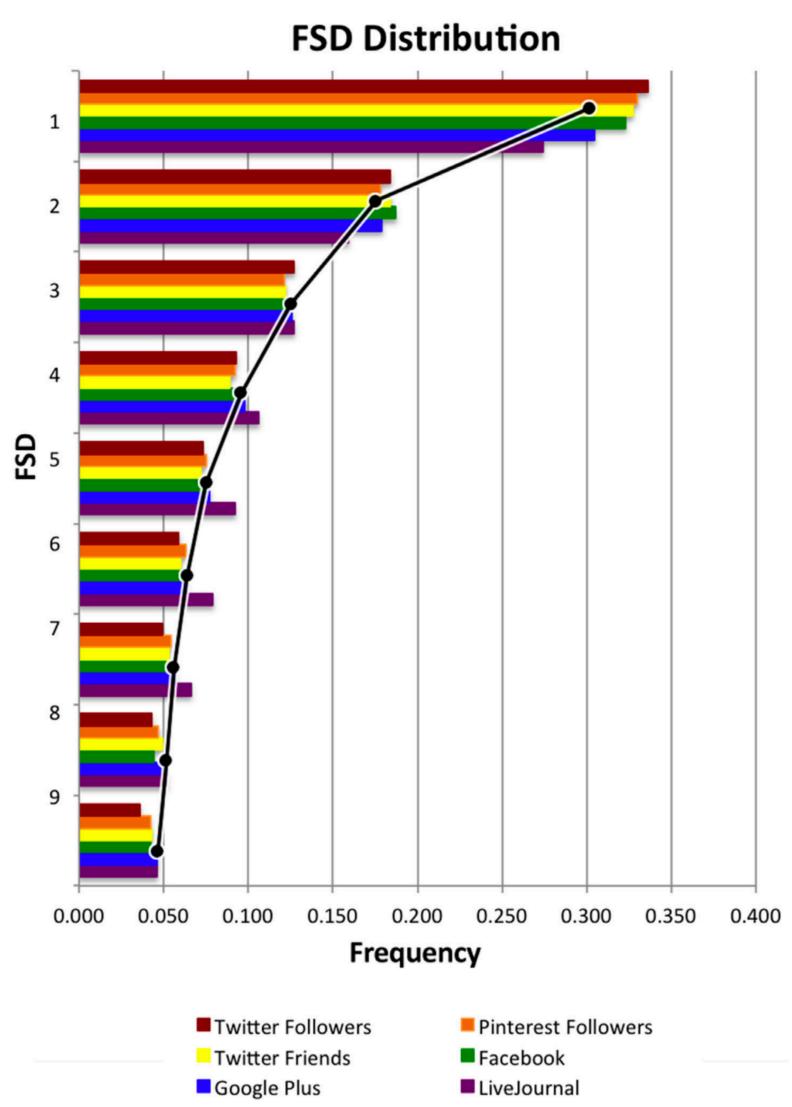
What methods can be used to detect bot?

- Analytical
- Statistical
- Network Science (calculation of centrality measures on graphs)
- Machine Learning

Benford's law

A dataset satisfies Benford's law if the probability of observing a first digit of d

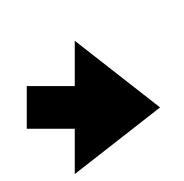
is approximately $log_{10}(\frac{d+1}{d})$.

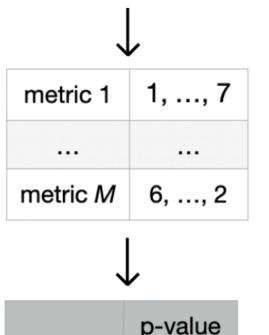


First digit of *d*

Benford's law in social network

- Successfully used to detect fraud
- It is proved that it is applicable to the social networks (w.r.t. various metrics parameters)
- Hypothesis:
 - Real users obey Benford's law
 - Bot do not obey Benford's law


*Golbeck J. Benford's law applies to online social networks // PLoS One. 2015. T. 10. Nº 8.

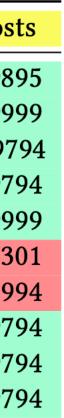


Experiment

Dataset	Туре	Number of profiles
bot_1	software bots	301
bot_2	software bots	295
bot_3	live bots	298
bot_4	software bots	301
bot_5	software bots	303
bot_6	live bots	304
bot_7	live bots	302
bot_8	live bots	357
user_1	activists	385
user_2	mass media	298
user_3	developers	332
user_4	sport	224
user_5	mass media	420
user_6	blog	251
user_7	commerce	284
user_8	festival	259
user_9	sport	181
user_10	developers	397

	metric 1	 metric M
account 1	1 94	 6 3
account N	7 6	 2 4

	p-value	
metric 1	0.97	
metric M	0.64	


Kolmogorov–Smirnov test

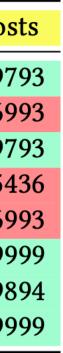
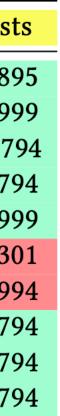

-	Dataset	friends	groups	followers	subscriptions	albums	photos	pos
	user_1	0.9895	0.9999	0.9999	0.9895	0.9895	0.9999	0.98
	user_2	0.9895	0.9794	0.3364	0.9999	0.3364	0.3364	0.99
	user_3	0.9794	0.9895	0.9999	0.9895	0.4647	0.6994	0.97
	user_4	0.6994	0.3364	0.3364	0.9794	0.3364	0.6994	0.97
	user_5	0.9794	0.9794	0.9895	0.9895	0.1243	0.7301	0.99
	user_6	0.9895	0.6994	0.9999	0.9794	0.3364	0.6994	0.73
	user_7	0.9794	0.9794	0.7301	0.6994	0.7301	0.1243	0.69
	user_8	0.9895	0.9895	0.9999	0.9895	0.3364	0.9794	0.97
	user_9	0.6994	0.9895	0.9794	0.9794	0.9539	0.9296	0.97
_	user_10	0.9999	0.9794	0.9999	0.9794	0.3364	0.9895	0.97

Table 2. Table with p-values for real user datasets

Table 3. Table with p-values for bot datasets

Dataset	friends	groups	followers	subscriptions	albums	photos	pos
bot_1	0.1243	0.0016	0.9894	0.3364	0.9439	0.5136	0.97
bot_2	0.6993	0.0366	0.9894	0.3364	0.9776	0.6171	0.69
bot_3	0.6993	0.0630	0.9793	0.1243	0.9907	0.7344	0.97
bot_4	0.5436	0.5727	0.8239	0.6993	0.7090	0.7740	0.54
bot_5	0.3364	0.3364	0.6993	0.3364	0.5454	0.8994	0.69
bot_6	0.9793	0.9999	0.6993	0.9999	0.6993	0.6993	0.99
bot_7	0.9793	0.9999	0.9793	0.7301	0.5907	0.7229	0.98
bot_8	0.9999	0.9894	0.6993	0.9793	0.9793	0.9793	0.99

Results and Discussion


- Albums, photos, posts, and followers are usually hidden with privacy settings
- Probably, it is possible to detect software bots
- Probably, usage of Benford's law is not enough to detect human animated bots

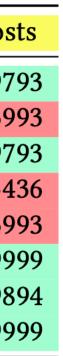
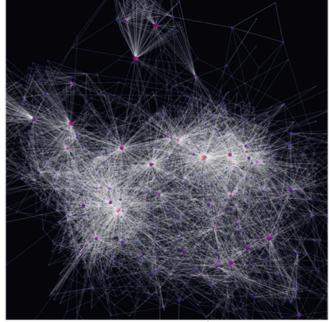
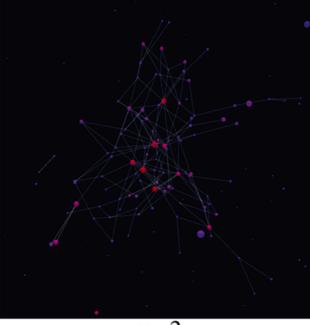

_								
	Dataset	friends	groups	followers	subscriptions	albums	photos	post
	user_1	0.9895	0.9999	0.9999	0.9895	0.9895	0.9999	0.989
	user_2	0.9895	0.9794	0.3364	0.9999	0.3364	0.3364	0.999
	user_3	0.9794	0.9895	0.9999	0.9895	0.4647	0.6994	0.979
	user_4	0.6994	0.3364	0.3364	0.9794	0.3364	0.6994	0.979
	user_5	0.9794	0.9794	0.9895	0.9895	0.1243	0.7301	0.999
	user_6	0.9895	0.6994	0.9999	0.9794	0.3364	0.6994	0.730
	user_7	0.9794	0.9794	0.7301	0.6994	0.7301	0.1243	0.699
	user_8	0.9895	0.9895	0.9999	0.9895	0.3364	0.9794	0.979
_	user_9	0.6994	0.9895	0.9794	0.9794	0.9539	0.9296	0.979
	user_10	0.9999	0.9794	0.9999	0.9794	0.3364	0.9895	0.979

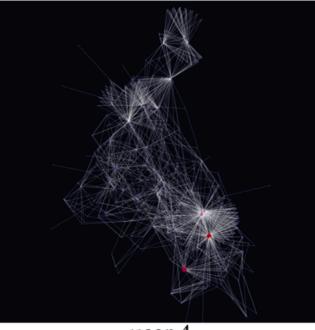
Table 2. Table with p-values for real user datasets

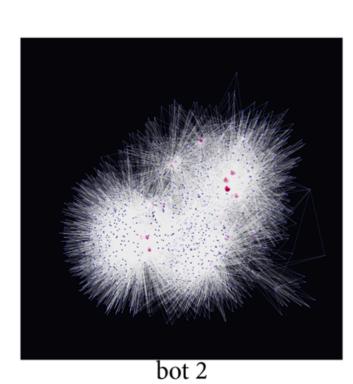
Table 3. Table with p-values for bot datasets

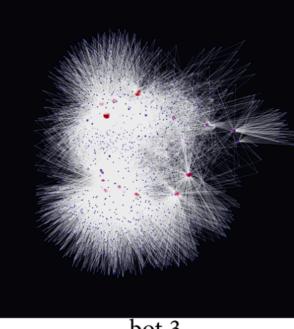

photos j	pos
0.5136 0).97
0.6171 0).69
0.7344 0).97
0.7740 0).54
0.8994 0).69
0.6993 0).99
0.7229 0).98
0.9793 0).99
	0.5136 0 0.6171 0 0.7344 0 0.7740 0 0.8994 0 0.6993 0 0.7229 0

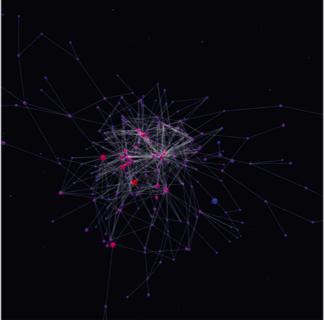


Discussion


 bot_3 - is an exception but (probably) the seller was cheating


user 1





user 4

Dataset	Туре	Number of prop
bot_1	software bots	301
bot_2	software bots	295
bot_3	live bots	298
bot_4	software bots	301
bot_5	software bots	303
bot_6	live bots	304
bot_7	live bots	302
bot_8	live bots	357
user_1	activists	385
user_2	mass media	298
user_3	developers	332
user_4	sport	224
user_5	mass media	420
user_6	blog	251
user_7	commerce	284
user_8	festival	259
user_9	sport	181
user_10	developers	397

Table 2. Table with p-values for real user datasets

Dataset	friends	groups	followers	subscriptions	albums	photos	posts
user_1	0.9895	0.9999	0.9999	0.9895	0.9895	0.9999	0.9895
user_2	0.9895	0.9794	0.3364	0.9999	0.3364	0.3364	0.9999
user_3	0.9794	0.9895	0.9999	0.9895	0.4647	0.6994	0.9794
user_4	0.6994	0.3364	0.3364	0.9794	0.3364	0.6994	0.9794
user_5	0.9794	0.9794	0.9895	0.9895	0.1243	0.7301	0.9999
user_6	0.9895	0.6994	0.9999	0.9794	0.3364	0.6994	0.7301
user_7	0.9794	0.9794	0.7301	0.6994	0.7301	0.1243	0.6994
user_8	0.9895	0.9895	0.9999	0.9895	0.3364	0.9794	0.9794
user_9	0.6994	0.9895	0.9794	0.9794	0.9539	0.9296	0.9794
user_10	0.9999	0.9794	0.9999	0.9794	0.3364	0.9895	0.9794

Table 3. Table with p-values for bot datasets

Dataset	friends	groups	followers	subscriptions	albums	photos	posts
bot_1	0.1243	0.0016	0.9894	0.3364	0.9439	0.5136	0.9793
bot_2	0.6993	0.0366	0.9894	0.3364	0.9776	0.6171	0.6993
bot_3	0.6993	0.0630	0.9793	0.1243	0.9907	0.7344	0.9793
bot_4	0.5436	0.5727	0.8239	0.6993	0.7090	0.7740	0.5436
bot_5	0.3364	0.3364	0.6993	0.3364	0.5454	0.8994	0.6993
bot_6	0.9793	0.9999	0.6993	0.9999	0.6993	0.6993	0.9999
bot_7	0.9793	0.9999	0.9793	0.7301	0.5907	0.7229	0.9894
bot_8	0.9999	0.9894	0.6993	0.9793	0.9793	0.9793	0.9999

Results and plans for future research

- The method is not able to identify bots individually, since it analyzes distributions.
- Perhaps, bots add to their friend list other bots. So, applying this method to the friend list can identify bots individually. This hypothesis needs to be tested.
- Perhaps, the p-value will be useful as a feature in ML. This hypothesis needs to be tested.

M. Kolomeets¹², D. Levshun¹², S. Soloviev²³, A. Chechulin¹, I. Kotenko¹ ¹St. Petersburg Federal Research Center of the Russian Academy of Sciences ²Université Paul Sabatier Toulouse III ³Toulouse Institute of Computer Science Research (IRIT)

