

ISTANBUL TECHNICAL UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING

Credit Card Fraud Detection with NCA Dimensionality Reduction

Beyazıt Bestami YÜKSEL

yukselbe18@itu.edu.tr

SINCONF 2020

13th International Conference on

Security of Information and Networks

Outline

- Introduction
- Fraud Detection and Machine Learning
- Proposed System
- Experimental Analysis
- Conclusion
- Q&A

Introduction

- Credit card has a significant role in today's economy. Therefore, we
 need to be very careful about the increased fraud activities.
- A proactive way is required to prevent credit card fraud.
- Machine Learning algorithms have a very important place in predictable system designs.
- Suggestion for performance enhancement for K-Nearest Neighbor (KNN) algorithm in Fraud Detection
- The success of the realized system
- Challenges

Fraud Detection and Machine Learning

- Credit card fraud activities continue to be the subject of many studies as it causes huge financial losses and remains current.
- According to the literature, it is possible to group the studies on this subject in terms of the methods used in general
 - Random Forest
 - Decision Trees
 - Support Vector Machine
 - Spark
 - Deep Learning Methods
 - ✤ Adaboost

- Majority Vooting
- Online risk fraud scoring system and Offline fraud prediction systems
- ✤ KNN
- Artificial Neural Network
- Cost-Sensitive Approaches

Proposed System

BBY

Dataset Description

- The Dataset consists of 284,807 records in total
- Only 492 of them are fraudulent cases
- 0.172% of fraud cases resulting in extremely imbalance.
- Features V1 to V28 are numerical values
- The attributes that are not changed by PCA are Time and Amount.
- 'time' contains the seconds gone by between each trade
- 'amount' is the total exchange Amount.
- Feature 'Class' is the response variable

Evaluation Metric

- It is reasonable to use Area under ROC Curve (AUROC) as a general-purpose metric in classification algorithms.
- AUROC represents the probability of distinguishing the model performed.
- AUC stands for "Area under the ROC Curve Receiver Operating Characteristics".
- The scope of this area is AUC.
- The larger the area covered, the better the machine learning models are in distinguishing the given classes.
- The ideal value for AUC is 1.

Outlier Detection

- Our data is skewed data
- Outliers detected and removed from the data set.
- Local Outlier Factor (LOF) method used for this process.
- LOF is an unsupervised Outlier Detection method.
- In order to calculate whether point x is outlier or inlier, the LOF value of that point is checked.
- If LOF(X) is greater than compare value (generally selected value 1) that point accepted as outlier.

KNN

The main reasons for choosing the KNN algorithm

- We can list the training process is fast easy to implement
- Easy to tune because it has only k and distance parameters.
- It is sensitive against outliers
- Not very suitable for big data
- If there are too many features in the dataset it can be troublesome.

KNN with Grid Search

- The optimum parameters found in the KNN algorithm to achieve the higher accuracy
- For this, grid search method used.
- While finding the optimum parameters, the parameters that we tune;
 - n value to perform the classification process by looking at how many neighbors,
 - weight value that can take uniform and distance values
 - p value is the distance calculation method to be used when measuring distance between neighbors.

PCA (Principle Component Analysis)

- The dataset standardized again before applying PCA.
- Since PCA is an unsupervised algorithm, we have scaled all input data
- We did not split the dataset into train and test set.
- Based on the correlation matrix, the dataset reduced into two dimensions and its performance observed.
- For each point in the reduced dataset, the classification algorithm applied in the mesh grid created.
- We implemented the KNN algorithm again to the reduced data obtained after the dimension reduction process with PCA

NCA (Neighborhood Component Analysis)

- In supervised learning, NCA is more successful than standard PCA methods
- For the optimization criterion, NCA takes advantage of stochastic neighbor assignments rather than simply using k nearest neighbors.
- Unlike PCA, NCA is not an unsupervised learning algorithm.
- It needs class information when performing fit operations.
- The p1 and p2 values in the x and y axes shown in the indicate the newly formed NCA principal components.

Evaluation

BBY

Dimensionality Reduction

Classification

AUROC

SINCONF 2020 13th International Conference on Security of Information and Networks

Conclusion & Future Works

- Our main motivation for realizing this project was to identify transactions that could be described as credit card fraud in the light of historical data.
- Most of the machine learning algorithms applied in such studies yield over 90% accuracy results.

Results	Method			
Comparison	KNN	KNN with Grid Search	PCA	NCA
Accuracy	0.92	0.94	0.90	0.96
AUC	0.93	0.94	0.90	0.97
European Dataset Result				

SINCONF 2020 13th International Conference on Security of Information and Networks

Future Works

- In this work, we presented a new method with higher accuracy than studies used KNN classification algorithms done to date.
- We obtained 0.97 AUC value
- The implemented method tested on different datasets which consisting of a small number of data, showed that it is possible to obtain high detection accuracy and low false negative.
- In future studies, we will be focused on optimization processes that will completely eliminate the error rate
- By working with different datasets, the performance of the applied method independent from the dataset will be observed.

